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Abstract

Road casualties represent an alarming concern for modern societies, especially in
poor and developing countries. In the last years, several authors developed sophis-
ticated statistical approaches to help local authorities implement new policies and
mitigate the problem. These models are typically developed taking into account a
set of socio-economic or demographic variables, such as population density and traf-
fic volumes. However, they usually ignore that the external factors may be suffering
from measurement errors, which can severely bias the statistical inference. This pa-
per presents a Bayesian hierarchical model to analyse car crashes occurrences at the
network lattice level taking into account measurement error in the spatial covariates.
The suggested methodology is exemplified considering all road collisions in the road
network of Leeds (UK) from 2011 to 2019. Traffic volumes are approximated at the
street segment level using an extensive set of road counts obtained from mobile devices,
and the estimates are corrected using a measurement error model. Our results show
that omitting measurement error considerably worsens the model’s fit and attenuates
the effects of imprecise covariates.

Keywords: Bayesian Hierarchical Models, Car Crashes, GPS Traffic Devices, Network
Lattice, Measurement Error, Spatial Networks

1 Introduction

According to the World Health Organisation [57, 56], the global number of road casualties
is steadily increasing since 2016 and, in the last few years, reached unacceptably high level.
Car crashes are the leading cause of death for children and young people aged 5-29 years
and the eight cause of death in all age groups. Traffic injuries have direct social costs and
indirect economical consequences (such as an adverse impact on the burden of hospitalisation
or an increased health expenditure) that represent, on average, 3% of the annual GDP [58].
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These problems are slightly less severe in more developed countries (mainly in Europe or
North America), but the situation is still alarming considering that people from lower socio-
economic backgrounds are always more likely to be involved in traffic casualties. Moreover,
the burden of road accidents is disproportionately borne by the vulnerable road users (such as
pedestrians, cyclists and motorcyclists), and, according to a mental health study, 39.2 percent
of car crashes survivors develop post-traumatic stress disorder and require psychological
assistance [12]. Hence, local and global authorities define road safety plans as an “unfinished
agenda", demanding for innovative approaches and evidence-based interventions [58].

The first papers were developed using the areal approach [38, 1, 7, 14], whereas the net-
work lattice strategy gained popularity during the last years thanks to increasing computing
capabilities and the rapid development of open-source spatial databases (such as Open Street
Map) that provided the starting point for creating street networks at a wide range of spatial
scales [6, 5, 36, 13, 15, 26]. Both frameworks employ spatial smoothing techniques to simplify
the estimation process, borrowing strength from neighbouring sites. However, in this paper
we adopt the network lattice approach because it provides spatially disaggregated results at
the street segment level that can be more informative from a social and policy perspective.
Moreover, the road infrastructure and the traffic volumes, which are key ingredients for road
safety models, can be included more naturally in statistical models developed over a net-
work lattice. We refer to Lord and Mannering [35], Savolainen et al. [46], and Ziakopoulos
and Yannis [60] for more historical details, alternative modelling strategies and additional
considerations.

Following the development of statistical methodologies over the years, the road safety
analysts focused on the study of car crashes determinants. In fact, there is a vast literature
that links traffic accidents to a variety of factors, such as vehicles characteristics [33], en-
vironmental conditions [47, 2], drivers behaviour [28], and, as already mentioned, the road
design [39]. Amongst the various potential causes, road traffic is certainly of particular inter-
est since a robust understanding of the relationship between casualties and traffic conditions
is necessary to improve traffic management and reduce the crashes frequencies. A number of
papers addressed this issue, typically reporting that higher traffic flows are associated with
higher number of collisions [18, 30]. We refer to [53] for a recent discussion.

Road traffic is a dynamic phenomenon, evolving both in space and time [19]. It is
typically difficult to obtain precise measurements of traffic volumes and, for this reason,
several authors adopted alternative proxies derived from travel surveys or origin-destination
tables. Nevertheless, there is an increasing evidence suggesting that traffic conditions can
be accurately estimated using vehicular GPS data, i.e. moving devices acting as sensors [22,
55]. These new technologies represent a cheap and easy-to-use alternative to expensive and
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time-consuming questionnaires. Moreover, they eased the collection process even at a very
granular spatial domain, creating new opportunities to investigate in depth the relationship
between traffic flow and road casualties. For example, Stipancic, Miranda-Moreno, and
Saunier [50] and Petraki, Ziakopoulos, and Yannis [42] used GPS data to correlate collision
severity and frequencies with quantitative measures of congestion derived from smartphone-
collected GPS data. Following this latter approach, in this paper we approximate traffic
volumes at the street segment level using estimates derived from TomTom Move service
[51]. The main advantage of our workflow over the previous proposals is that TomTom
collects data with global coverage using billion of GPS devices. Therefore, it provides better
approximations of local traffic flows than any ad-hoc application.

Spatial data are often prone to measurement error (ME) and GPS devices represent no
exception. ME can arise at different stages of the data collection process and is typically
linked to various sources such as: a) instrumental imprecision in the measurement of physical
attributes; b) alignment and harmonisation of characteristics recorded at different spatial
scales or domains; c) unobservable effects that are only approximated by surrogate informa-
tion; d) preferential sampling or incomplete observations. Considering the context analysed
in this paper, the traffic volumes computed from GPS devices may suffer from ME since,
usually, only a small fraction of the vehicles circulating on a road network is equipped with
a GPS receiver. Therefore, the estimates could suffer from underreporting, which may not
be homogeneous in all parts of the network (i.e. it might have a spatial structure).

It is well known that ignoring ME leads to severe distortions in the statistical inference.
The estimate of the regression coefficient associated to the imprecise covariate can be biased
downwards (attenuation) or upwards (reverse attenuation), and even the effects of error-
free regressors can be distorted, where the direction of the bias depend on the correlations
between the variables. Furthermore, ME may cause a loss of power for detecting signals,
whereas relevant features in the data can also be masked. [17] call these effects the “Triple
Whammy of Measurement Error".

Nevertheless, there are only a few studies that addressed this problem, adjusting for
measurement error in spatial modelling. For example, the seminal papers by [9] and [59]
introduced Bayesian spatial and spatio-temporal models for disease mapping with errors in
the covariates. [32] developed spatial linear mixed models for a covariate observed with
error, whereas [29] proposed a semiparametric regression model to correct ME in the spatial
explanatory variables. To the best of our knowledge, there are no papers in the literature
that consider the problem of adjusting measurement errors in the covariates of a spatial
regression model for lattice data. Given the severe implication of ME, we believe this is a
relevant gap in the literature that is worth filling. Hence, the objective of this paper is to
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define a statistical model to estimate the car crashes rates at a very detailed spatial resolution
(i.e. the network lattice) using extensive information on traffic volumes that were derived
from GPS data adjusting the statistical model to account for a spatial ME component. The
suggested methodology is exemplified analysing the car accidents that occurred in the road
network of Leeds (UK).

We focused on a Bayesian hierarchical approach where prior knowledge can be easily
incorporated in the model. The estimation process is worked out using the Integrated Nested
Laplace Approximation (INLA) [45, 34], which is an alternative to MCMC inference for the
class of latent Gaussian models. Avoiding sampling, the INLA methodology can be used for
efficient model fitting even in presence of large datasets and it makes prior sensitivity analysis
and model comparisons more feasible. Similarly to Muff et al. [40], we adjust our modelling
structure using a reformulation of the hierarchy with augmented pseudo-observations.

The rest of the paper is structured as follows. In Section 2, the data sources are presented,
as well as the methods adopted to integrate them into a unique dataset. In Section 3, we
introduce the modelling strategy and the classical framework for ME. Section 4 shows the
main results of our analysis, whereas discussion and conclusions in Section 5 end the paper.

2 Data

The studies developed in this paper required the union of several datasets obtained from
different sources. As already mentioned, we analysed car crashes that occurred in the road
network of Leeds from 2011 to 2019. The city of Leeds was selected because it is the most
important city in the West Yorkshire region and it accounts for approximately 40% of all car
crashes in that area. The road network and the traffic volumes, which represent the spatial
domain and the covariate suffering from measurement error, were obtained from TomTom
Move service1, a “self-service product that gives direct access to the industry’s largest historical
traffic database" [51]. The study area and the road network are depicted in Figure 1, where
the inset map is used to geolocate the city with respect to England. Finally, we considered
a set of socio-economic and demographic variables from 2011 UK Census that were recorded
at the LSOA level (see below).

The datasets considered in this paper are provided by a range of different agencies and
institutions. This required us some data preprocessing in order to harmonise and convert
them into a usable format. Hence, in the remaining part of this section, we briefly introduce
the data providers and describe the preprocessing steps that were necessary to combine these

1URL: https://move.tomtom.com/. Data downloaded in July 2021.
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Figure 1: The black polygon denotes the geographical border of the City of Leeds (UK),
while the grey polygons denote the Lower Layer Super Output Areas (LSOA) in Leeds. The
black segments represent the street network adopted in this study, whereas the inset map is
used to locate the study-area with respect to England.

datasets into a unique structure suitable for the statistical analysis detailed in Section 3.

2.1 Road network and traffic volumes

The road network was built using data downloaded from TomTom Move provider. Starting
from 2008, TomTom collects anonymized GPS location data and gives its users access to
“the largest car-centric traffic database of more than 14 trillion anonymously collected real
trip data points"2. The TomTom Traffic Stats service (which is part of TomTom Move)
can be used to download traffic data, either via a web portal or an API, using customised
queries selecting particular geographical areas (e.g. Leeds) or time periods. It offers three
types of analysis named Route Analysis (which returns average speed and traffic counts
for a given route), Area Analysis (which returns average speeds, travel times, and traffic
counts for all street segments in a given area), and Traffic Density (which is similar to Area
Analysis but it focuses only on traffic counts). In all cases, the results are supported by
a geographical database that describes the spatial dimension of the query, typically as a
collection of geolocated segments.

2Sources: https://support.move.tomtom.com/ts-introduction/ and https://support.move.tomto
m.com/products/traffic-stats/.
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Hence, using the Area Analysis service, we downloaded the street segments that compose
the most important roads in Leeds and the corresponding traffic volumes. More precisely,
TomTom developed a set of rules to rank all road segments according to their importance
in a transportation system using a value (named Functional Road Class, FRC) going from 0
(Motorways) to 8 (Least important roads). We focused our analysis on a subset of segments,
selecting only those that are internally classified by TomTom as Motorways, Major Roads or
Secondary Roads. The chosen segments represent only a subset of the complete road network
but, according to our exploratory analysis, approximately 50% of all car crashes registered
in Leeds from 2011 to 2019 occurred in their proximity. Additional details on the internal
road classes defined by TomTom are reported at the following link: https://developer.

tomtom.com/traffic-stats/support/faq/what-are-functional-road-classes-frc.
The road network downloaded from TomTom Traffic Stats was composed by 8814 seg-

ments of different lengths, ranging from 3m to 2753m with an average value of 67.5m (sd =
108m). According to TomTom documentation, the road segments have a random length and
they are created internally at every location where a road attribute (e.g. road class or speed
limit) changes. The road network covers approximately 595km. After downloading the raw
geographic database, we removed all sets of isolated segments to simplify the estimation of
the statistical model detailed in Section 3 [27, 24]. More precisely, the raw network was
composed by a big group of connected segments and two isolated smaller clusters with 13
and 3 segments, respectively. After removing these two groups, we computed a (sparse)
binary adjacency matrix among the segments since they represent the elementary units for
the statistical model introduced below. This matrix describes the lattice connectivity and
characterises the spatial dimension of the data. It is one of the key ingredients to estimate
the spatial random effects characterised in the next section. The processed road network
and the FRC values are depicted in Figure 2a. We notice that the spatial network spreads
uniformly over the entire municipality territory. The shape of the motorway and the arterial
thoroughfares reaching the city centre can also be clearly distinguished. We refer to Gilardi
et al. [26] for more details on the pre-processing steps. Finally, it should be noted that, to
avoid links among overlapping segments lying at different heights (e.g. bridges and under-
passes), all operations detailed before were run assuming that two segments were connected
if and only if they share a point in the union of their boundaries.

The most important benefit of road networks downloaded from TomTom Traffic Stats is
that the provider links the geographic data to traffic counts that, according to the official
documentation, are estimated at the segment level using “anonymous signals from connected
car in-dash navigation systems, portable navigation devices and anonymous GPS-equipped
mobile phones". They are collected from “600 million devices in use globally, generating over
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3.5 billion kilometres of GPS measurements every single day in over 80 countries" 3. Clearly,
the estimates obtained from TomTom Move suffer some underreporting being a sample of
the true traffic volumes and they might be affected by spatially structured and unstructured
random errors. Hence, this variable will be included in the road safety models using a spatial
measurement error correction, as explained in Section 3. Figure 2b displays the estimated
traffic volumes that occurred in the road network of Leeds from 1st of January 2019 to 31st
of December 2019. First, we notice that the traffic counts are provided at an extremely
detailed level of spatial resolution that allows us to define a measurement error model at
the network lattice level. Then, we can see that the values have a large variability, ranging
from 180 to, approximately, 4.5M units. Unsurprisingly, the highest values are recorded for
motorways and major roads, indicating a high correlation level between the two thematic
values (i.e. FRC classes and TomTom counts). Finally, due to traffic data availability, we
developed our analysis considering only one year of historical data. However, it should be
considered that annual traffic flows are reasonably stable, hence we do not expect any major
difference if average values calculated over a larger period, as the one considered for accident
data, were included in the statistical model [14].

2.2 Car crashes data

In this paper, we focused on the car crashes that occurred between the 1st of January 2011
and the 31st of December of 2019 in the road network of Leeds. More precisely, starting
from a database4 shared by the Department for Transport (DfT) that contains all geo-located
traffic collisions in England during the last years, we filtered only the events that occurred
inside the polygon of Leeds. Furthermore, given that the TomTom network represents only
a subset of the complete city network and that, according to some working papers shared by
the DfT [20, 21], the car crashes locations are typically provided at 10m or less resolution,
all road collisions that occurred farther than 10m from the closest street segments were
excluded from the analysis since we assumed they occurred in other segments not included
in the network. The final sample is composed of 7234 events, and they are reported as
black dots in Figure 2a. Then, we projected all crash locations to the nearest point of the
road network, counting the occurrences on all street segments. These values represent the
response variable for the statistical model defined below. We end this section pointing out
that the DfT database contains only road collisions that involved at least one personal injury
and became known to the Police forces within thirty days of the occurrence. Moreover, the

3Source: https://support.move.tomtom.com/faq-data-source-quality/
4Data available at the following url: https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5

ce24a11f/road-safety-data. Downloaded in November 2021.
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(a) Street segments and car crashes locations. The
pink star denotes the city centre.

(b) Traffic counts measured by TomTom in Leeds
during 2019

Figure 2: The road network downloaded from TomTom portal. (a) The FRC values describe
the importance of each segment in a transportation system. The value 0 corresponds to
motorways, 2 is for major roads and 3 for secondary roads. The black dots denote the
location of the car crashes that occurred in the network from 2011 to 2019. (b) Segments
are coloured according to the estimates of traffic volumes in 2019. We can notice there is a
strong relationship between the two thematic values (i.e. FRC and traffic counts).

English Government does not enforce people to report all personal injury accidents to the
police. Hence, we acknowledge that the crashes counts may suffer, to some extent, from
under-reporting and we refer to Savolainen et al. [46] for an extensive discussion on this
problem.

2.3 Socio-economic variables

The statistical models described in Sections 3 and 4 take into account a set of socio-economic
covariates obtained from 2011 UK census. The data were downloaded from the Nomis
website5, a webpage maintained by the University of Durham which provides all the official
statistics related to census and labour market. In particular, following the literature on car
crashes and road safety analysis, we decided to include three variables, namely the population
density (given by the ratio of the number of inhabitants in a given region and its area in
squared metres), the proportion of young people (given by the ratio of the people aged 18
to 29 and the total population), and the proportion of home workers (given by the ratio
of home workers population and total workers population). These variables measure socio-
demographic factors that cannot be fully explained using road-specific covariates like the

5URL: www.nomisweb.co.uk. Data downloaded in July 2021.
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road type.
However, the census variables obtained from Nomis webpage were recorded at the Lower

Layer Super Output Areas (LSOA) level, i.e. geographical areas designed by the Office for
National Statistics to improve the reporting of small area statistics and census data estimates
[41]. Hence, the socio-economic covariates and the road network were spatially misaligned
and they were merged using an overlay operation: we assigned to each street segment the
census values of the LSOA that intersects the largest fraction of the segments. The road
network and the LSOA in Leeds are depicted in Figure 1.

3 Statistical methods

This section introduces the statistical models that were developed to analyse the road ca-
sualty occurrences. We started from a three-level Bayesian hierarchical model which is
presented in Section 3.1. This model does not include any measurement error correction
and represents the baseline model in our analysis. Thereafter, Sections 3.2 and 3.3 define
two types of extensions. The first one enhances the baseline model including a (classical)
measurement error term, whereas the second one further improves the correction allowing
for potential spatial dependence in the ME by including a spatially structured random effect.
Finally, we briefly discuss a few techniques for comparing the three approaches and some
computational details behind the estimation of ME models.

3.1 Baseline model

Let yi, i = 1, . . . , n denote the number of car crashes that occurred in the ith road segment.
Following a classical hypothesis in the road safety literature (see, for example, Ziakopoulos
and Yannis [60, Section 3]), in the first stage of the hierarchy we assume that

yi|λi ∼ Poisson(eiλi), (1)

where λi represents the car crashes rate and ei is an offset parameter that we set equal to
the geographical length of each segment. As we mentioned in the previous section, the road
segments have different lengths; hence, the offset values account for the fact that longer
street segments are expected to have a higher collision risk than shorter ones, guaranteeing
comparable rates.

The second level of the hierarchy defines a log-linear structure for λi. More precisely, we
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assume that

log(λi) = β0 + βxxi +

p∑
j=1

βjzij + θi, (2)

where β0 denotes the intercept, xi represents the unobserved true traffic volumes with param-
eter βx, {zi1, . . . , zip} is a set of error-free covariates and {β1, . . . , βp} are the corresponding
coefficients. Clearly, model (2) cannot be estimated since xi is not observed. In this pa-
per we assume that the traffic estimates obtained from TomTom Move provider represent a
proxy, say wi, for the real traffic volumes. Hence, after substituting xi with wi, the log-linear
structure for λi writes as

log(λi) = β0 + βwwi +

p∑
j=1

βjzij + θi, (3)

where βw denotes the coefficient associated to the proxy measure. Finally, θi denotes a
spatially structured random effect that is modelled using an Intrinsic Conditional Auto-
Regressive (ICAR) distribution [10, 11].

The ICAR distribution is a common tool to induce spatial dependence in statistical
models developed for lattice data. It is is typically defined through a set of conditional
distributions

θi| {θi′ , i′ ∈ ∂i} ; τθ ∼ N

(
1

mi

∑
i′∈∂i

θi′ ;
1

miτθ

)
, (4)

where mi and ∂i represent the cardinality and the indices of the set of neighbours for unit
i, respectively. As we briefly mentioned in Section 2.1, these quantities are derived from a
(sparse) binary adjacency matrix, denoted by W , that summarises the neighbouring struc-
tures among the street segments. Besag [10] showed that the conditional distributions in (4)
yield a joint multivariate distribution that can be expressed as

θ|τθ ∼ N
(
0; [τθ(D −W )]−1

)
, (5)

where D = diag(m1, . . . ,mn). It is possible to prove that the variance-covariance matrix
in Equation (5) is not positive definite, a problem that is usually solved imposing a sum-
to-zero constraint on each component (i.e. each cluster of connected road segments) of the
vector {θ1, . . . , θn} [27]. We refer to Banerjee, Carlin, and Gelfand [4], Martínez-Beneito and
Botella-Rocamora [37], and references therein for more details on the ICAR prior.

The third level completes the definition of the baseline hierarchical model specifying the
prior distributions for each parameter in (2). Considering that, before estimating the model,
all fixed effects were scaled to zero mean and unit variance, we assigned a N(0, 50) prior to
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β0, βw, and βj, j = 1, . . . , p and a logGamma(1, 5e− 05) prior to log(τθ).

3.2 Classical measurement error model

As mentioned at the beginning of this section, the first extension improves over the baseline
correcting the traffic volume estimates with a classical measurement error model. In general
terms, the classical ME model assumes that a covariate, say xi, can only be observed via a
proxy, say wi, such that

wi = xi + ui, i = 1, . . . , n. (6)

The terms {u1, . . . , un} represent the random errors and, as in the previous case, the index n
denotes the number of statistical units. The random errors are assumed to be independent
and normally distributed with zero mean and precision τu, i.e. ui

i.i.d∼ N (0, 1/τu). Moreover,
the classical ME model also assumes that the error terms are independent of the true covari-
ate, here denoted by xi, and, when working in a regression setting, it is also assumed they
are independent of the response variable and any other covariate included in the regression
model. We refer to [17] and [16] for a thorough introduction to ME models.

In the case study presented in this paper, we assume that the traffic volumes detected
using mobile devices can approximate the unobservable measurements. We also expect that
the errors obtained in the estimation process are independent of the actual traffic flows,
the number of casualties in each road segment (i.e. the response variable of the Bayesian
hierarchical model), as well as any other road-related or demographic covariate. Hence,
the classical ME model specified above provides an adequate framework for the case at
hand. Moreover, following the approach in Muff et al. [40, Section 4.1], we assume that
the unobserved covariate has a Gaussian distribution with precision τx and mean µi that
depends on a set of predictors, say z̃ij.

We can now present the extension of the baseline model. To account for potential ME,
the baseline model in Equation (1) is enriched by two ME terms and writes as

yi|λi ∼ Poisson(eiλi)

xi|µi ∼ N (µi, 1/τx)

wi|xi ∼ N (0, 1/τw)

, (7)

where the index i ranges from 1 to n. The first expression, which is usually named as
regression or outcome model in the ME literature, can be interpreted as before, whereas
the second and third expressions define the ME structure. They are typically referred to
as exposure model and error model, respectively. In this paper, the variable xi denotes the
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(unobserved) real traffic volumes, while wi are the volume’s estimates derived from TomTom
data. The parameters τx and τw represent the precisions of the two terms.

In the second level of the hierarchy, previously described by Equation (3), we assume
that 

log(λi) = β0 + βxxi +
∑p

j=1 βjzij + θi

xi = µi + εi and µi = α0 +
∑q

j=1 αj z̃ij

wi = xi + ui

, (8)

where the coefficients {βx, β0, β1, . . . , βp} and the variables {xi, zij, θi} are introduced above.
The parameter α0 denotes the intercept in the exposure model, {α1, . . . , αq} is another set of
coefficients and {z̃i1, . . . , z̃iq} are the corresponding error-free variables. The terms ui and εi,
which are assumed to be independent of each other, denote zero-mean normally-distributed
unstructured error components having precisions τu and τε, respectively.

We can notice that the main difference between the baseline model and the first extension
is that the former simply substitutes the proxy variable to the unobserved measurements,
while the latter defines a precise ME model to include this approximation.

The third level of the hierarchy specifies the prior distributions for all parameters included
in the regression model. In particular, following the same reasoning as before, we assigned
a N(0, 50) prior to β0, βx, {β1, . . . , βp}, α0, {α1, . . . , αq}, and a logGamma(1, 5e− 05) prior
to the logarithm of τθ. The parameters τu and τε, which represent the uncertainty in the
exposure and error components, were modelled using the so-called Penalised Complexity
(PC) priors. PC priors were defined in Simpson et al. [48] starting from a list of desiderata
(e.g. robustness or invariance regarding reparametrisations) and, as the name suggests, they
penalise departures from a base model (see Definition 1 in the original paper). We adopted
these priors since they provide an attractive alternative to classical weakly-informative priors
and can be constructed using probability statements on the parameters space. These are
extremely appealing features considering that we are working in a ME context where prior
specification plays a crucial role.

In the univariate case, the PC priors can be defined by two parameters, say σ0 and α,
that control the mass in the tail of the distribution, giving an upper bound for the range of
sensible values. For example, considering the precision parameter for unstructured Gaussian
random effects, such as εi and ui, the PC prior, denoted in the rest of the paper as PCτ (σ0, α),
can be induced via the following probability statement

P
(

1√
τ
> σ0

)
= α⇐⇒ P(σ > σ0) = α.

12



We refer to Simpson et al. [48] for more details. In this paper, considering the high correlation
between traffic values and road types, displayed in Figure 2, and that all variables are scaled
to zero mean and unit variance, we decided to adopt a PCτ (1, 0.1) prior for τε and PCτ (2, 0.1)
for τu. In these cases, we are assuming that, in the standardised scale, the values of σε = 1√

τε

and σu = 1√
τu

are smaller than 1 and 2, respectively.

3.3 Spatial classical measurement error model

The second extension assumes that the measurement error can also include a spatially struc-
tured component which encompasses spatial regularities that are not appropriately accounted
by the measurable covariates. We will refer to this type of structure using the term spatial
classical measurement error model. In general terms, it writes as

wi = xi + ui + ϕi; i = 1, . . . , n. (9)

Equation (9) presents an additional term with respect to Equation (6) named ϕi. It accounts
for this extra source of spatial variability, adding a spatial smoothing effect to the unobserved
covariate. Considering the spatial nature of the data considered in this paper, we believe
that the spatial ME model provides an ideal framework for appropriately approximating
the (unobserved) road traffic volumes at the segment level using data derived from mobile
devices.

Under these assumptions, the model previously described by Equation (7), can be ex-
tended as follows 

log(λi) = β0 + βxxi +
∑p

j=1 βjzij + θi

xi = µi + εi and µi = α0 +
∑q

j=1 αj z̃ij

wi = xi + ui + ϕi

. (10)

The term ϕi denotes a spatially structured random effect that is modelled using an ICAR
prior, whereas all the other parameters are interpreted as before. We adopted the same
priors as in the first extensions, and we assigned a logGamma(1, 5e − 05) prior to log(τϕ),
i.e. the logarithm of the precision of the new spatial random effect.

3.4 Bayesian estimation of measurement error models

The three models described in the previous sections were estimated using the Integrated
Nested Laplace Approximation (INLA), a popular alternative to classical MCMC sampling
for a particular class of models, named Latent Gaussian Models (LGM) [45]. INLA provides
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an attractive framework to model spatial dependence in lattice data via random effects that
can be conveniently expressed as multivariate Gaussian distributions, typically with a sparse
precision matrix [44, 45, 3]. The ICAR prior represents a classical example. Moreover, [40]
recently showed that the INLA approach can be adjusted to accommodate ME terms through
a “reformulation with augmented pseudo-observations and a suitable extension of the latent
field". Hence, following their recommendations, we modified the last two models presented
above slightly readjusting the second level of the hierarchical structure.

In particular, Equation (8) now writes as
log(λi) = β0 + βxxi +

∑p
j=1 βjzij + θi

0 = −xi + µi + εi and µi = α0 +
∑q

j=1 αj z̃ij

wi = xi + ui

,

where we introduced a set of zero pseudo-observations on the left side of the second equation.
A similar approach was adopted to adjust Equation (10). Using this formulation, the re-
sponse variables can be specified via a response matrix that has one column for each separate
equation and 3n rows. We refer to [40], where more details on the computing aspects are
also discussed.

Finally, the models introduced in Sections 3.1, 3.2, and 3.3 were compared using Deviance
Information Criterion (DIC) [49] and Watanabe–Akaike Information Criterion (WAIC) [54,
25]. These criteria represent a generalisation of classical Akaike information criterion (AIC)
to Bayesian hierarchical models. They measure the adequacy of a model penalised by the
number of effective parameters. In both cases, lower values of the index suggest a better fit
of the model.

4 Results

In this section, we summarise the results obtained estimating the three models detailed
before. As already mentioned, given the spatial nature of the problem and the network
lattice constraints we decided to adopt the computationally efficient INLA framework via
the homonymous R package [34, 43] following Muff et al. [40]. Using a laptop with an AMD
Ryzen 5 3500U processor with Radeon Vega Mobile Gfx 2.10 GHz, four cores and 8GB of
RAM, estimating the baseline model required approximately 45 seconds, whereas estimating
the first and the second extension requires approximately 7 and 10 minutes, respectively.
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Table 1: Posterior means and standard deviations (in brackets) of all covariates included
in the log-linear model for λi considering the three regression models detailed in Section 3.

Baseline First extension Second extension

−4.980 −12.070 −19.871Intercept
(0.128) (0.165) (0.239)
0.437 8.097 15.6142nd Road Class
(0.142) (0.186) (0.268)
0.347 9.064 20.0843rd Road Class
(0.164) (0.205) (0.312)
−0.479 −0.911 −1.490Speed Limit
(0.041) (0.048) (0.087)
−0.017 0.029 0.025Population Density
(0.024) (0.023) (0.024)
0.003 0.045 0.036Young Pop. Ratio
(0.051) (0.043) (0.044)
0.096 0.109 0.115Smart-working Ratio
(0.041) (0.034) (0.036)
0.319 3.990 7.956Road traffic
(0.041) (0.081) (0.054)

4.1 Fixed effects

The baseline model and the two extensions were specified including a set of common covari-
ates in the log-linear structure for λi. In particular, besides the road traffic measurements,
we considered two structural variables obtained from TomTom network data, namely the
road class (i.e. the FRC values described in Section 2.1) and the speed limit (recorded as a
numeric variables with values ranging from 18 to 116 km/h), as well as three socio-economic
or demographic variables, namely the population density, the ratio of young residents, and
the percentage of people working mainly at or from home. As explained in section 2.3, the
last three variables were obtained from UK 2011 Census data. Traffic counts have been found
strongly related to the road class and speed limits; hence, these two latter road-specific co-
variates were also included as fixed effects in the exposure model (i.e. the second expression
in Equation (10)). Finally, since the considered covariates were collected at very different
scales, all numeric explanatory variables were standardised to zero mean and unit variances
before estimating the three models.

The posterior means and standard deviations for all covariates included in the regression
and exposure models are summarised in Tables 1 and 2, respectively. The coefficient associ-
ated to the road traffic variable in the regression model is reported in the last two rows of the
first table. Estimates strongly indicate the importance of the ME corrections and the strength
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Table 2: Posterior means and standard deviations (in brackets) of all fixed effects included
in the exposure considering the two extensions.

First extension Second extensions

1.873 1.934Intercept
(0.023) (0.023)
−2.030 −1.9732nd Road Class
(0.025) (0.024)
−2.298 −2.5603rd Road Class
(0.028) (0.031)
0.109 0.130Speed Limit
(0.008) (0.010)

Table 3: Posterior means and standard deviations (in brackets) computed using a model
that has the same structure of the baseline model excluding the covariate related to traffic
volumes.

Intercept 2n Road Class 3rd Road Class Speed limit Pop. Dens. Young Ratio Smart. Ratio

−4.334 −0.238 −0.484 −0.428 −0.018 −0.001 0.096
(0.094) (0.111) (0.122) (0.040) (0.024) (0.051) (0.042)

of the attenuation bias, especially for the baseline model. To interpret these figures we must
refer to the standard deviation of the original variable that, in this case, was found approxi-
mately equal to 700,000. For example, keeping all the other quantities of the baseline model
fixed, an increment of 100,000 annual traffic units in the original scale leads to an increase of
the car crashes rate equal to exp(0.319∗100, 000/700, 000) ' 1.046. Similar calculations pro-
vide an increase of the estimated car crash rate equal to exp(3.990∗100, 000/700, 000) ' 1.768

and to exp(7.956 ∗ 100, 000/700, 000) ' 3.116, for the two extended models.
Looking at the last four rows in Table 1, we can notice that the population density and

proportion of young residents covariates were not found significant in any of the three models,
while smart-working Ratio is found only slightly positively correlated with the car crashes
rates. These results are consistent among the three different specifications. On the other
hand, road-specific covariates were found extremely important both in the regression and
exposure models. Looking at the estimates in Table 2, we can conclude that, unsurprisingly,
the motorways are the most congested roads in Leeds. In fact, the coefficients associated
to the classes named as "2" and "3" (which correspond to the major and secondary roads,
respectively) were found negative, highlighting that, on average, the corresponding traffic
volumes are lower than the reference class (i.e. the motorways). A similar conclusion is also
suggested by the speed limit coefficient.
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Table 4: Posterior means and standard deviations (in brackets) of the hyperparameters
included in the three regression models detailed in Section 3.

Baseline First extension Second extension

0.100 0.690 0.458
τθ (0.006) (0.065) (0.024)

22.830 108.843
τε (1.372) (6.015)

2.910 16.317
τu (0.0489) (0.611)

0.767
τϕ (0.037)

From Table 1, we can notice that the motorways are regarded as the safest road type
among the three classes. This is a quite common finding in road safety analysis [23, 31, 14,
52, 26], and it can be explained by ad-hoc prevention measures often implemented by the
road planners (e.g. presence of physical dividers between opposite directions and absence of
road-side obstacles). Estimates across the three specifications show some instability since, as
already mentioned, the FRC variable is strongly correlated with the traffic volumes. However,
the two predictors always suggest the same potential impact i.e. the higher is the road traffic
coefficient, the lower is the intercept of the model since the motorways represent the reference
class and are typically associated to larger flows. Also the speed limit covariate supports a
similar conclusion: keeping all the other variables fixed, we expect less road casualties in roads
with higher speed limits. Similar findings are also reported by [30]. However, we found that
fitting the baseline model ignoring the traffic volumes leads to an opposite ranking regarding
the safeness of the highway classes. Estimates are detailed in Table 3. These estimates point
out that excluding the traffic covariate can have a confounding effect on the coefficient of
the FRC variable. These results show that the inclusion of traffic volumes and the definition
of a proper ME structure are crucial steps for developing an accurate road safety model.

4.2 Random effects

Table 4 summarises the posterior means and standard deviations of all hyperparameters
included in the three models. The first row contains the estimates of τθ, i.e. the precision
of the spatially structured random effect included in the regression model. This is the only
hyperparameter shared by all three specifications. Comparing the values of τu across different
models, we observe a lower spatial uncertainty in the last two cases, which is probably linked
to the inclusion of the ME structure that helps explaining part of the random variation. The
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Figure 3: Choropleth map displaying the posterior means of λi for all street segments in
the city network. The colours range from blue (lower risk) to red (higher risk). The grey
star denotes the city centre.

second row reports the estimates of τε, i.e. the precision of the unstructured random effect
in the exposure model. Both precisions are found quite high, which is not unreasonable since
the covariates were specified in the standardised scale and, as already mentioned, the traffic
estimates are strongly correlated with the road types and the speed limits. In fact, these
values are consistent with the considerations reported in Section 2.1 and the relationships
displayed in Figure 2. Finally, the last two parameters, namely τu and τϕ, denote the
precisions of the unstructured and spatially structured random effects included in the error
model, respectively. If we compare the posterior estimates across different extensions, we
can observe the same behaviour discussed above. In fact, the third model presents a higher
value of τu than the second one, which is probably due to the inclusion of spatially structured
terms that help explaining part of the random variation.
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4.3 Car crashes rates

The results reported in the previous subsections suggest that the two extensions overperform
the baseline model. Hence, hereinafter we compare the first and second extensions using the
DIC and WAIC criteria. We found that the inclusion of a spatial random effect in the
error model greatly improves the fit (DIC = 36272.34 vs 12517.35 and WAIC = 35618.01 vs
11054.73). Therefore, we will discuss below the second extension.

We report in Figure 3 a choropleth map displaying the posterior means of λi, i.e. the
road causality rates, for all street segments in the road network. The map was created using
a palette of ten colours going from blue (lower risk) to red (higher risk). The lowest value
corresponds to, approximately, one car crash every 10 kilometers while the higher value
correspond to, approximately, 1 car crash every kilometer. Looking at the map, we can
clearly recognise the shape of the motorways going through the city (see, e.g., Figure 2b),
since the corresponding street segments are coloured as dark blue. A similar behaviour can
be observed in the northern and north-eastern parts of the municipality. On the other hand,
we can notice that a few segments close to the city centre (identified by a black grey star)
and several arterial thoroughfares (e.g. Scott Hall Road, Woodhouse Lane, Kristall Road)
represent the streets more prone to accidents in the municipality.

4.4 Model validation and sensitivity analysis

We validated the predictive capabilities of the selected model computing the posterior means
of the car crashes rates, i.e. λi, and comparing these values (multiplied by the corresponding
offsets) with the observed counts via a series of density curves. The results are reported in
Figure 4, which clearly displays a good agreement between the two quantities, being lower
car crashes frequencies associated with lower posterior means.

Finally, considering the importance of priors elicitation in a Bayesian framework, we
performed a sensitivity analysis to evaluate the robustness of our results fitting the second
extension model under different prior distributions for βx, τε and τu. We decided to focus on
these parameters since they represent the key components of the ME correction. We varied
one prior at a time, considering more and less diffuse specifications than the ones considered
above. More precisely, we adopted a N(0, 25) and N(0, 100) prior for βx, a PCτ (0.5, 0.1)
and PCτ (2, 0.1) prior for τε, and a PCτ (1, 0.1) and PCτ (3, 0.1) prior for τu. The results are
reported in Tables 5 (fixed effects) and 6 (random effects). In both cases, the first column,
denoted by index (0), summarises the estimates obtained under default priors (i.e. the
priors detailed in Section 3), while the other columns contain the results with the alternative
specifications. Each column can be linked to the corresponding alternative prior using the
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Figure 4: Density curves comparing posterior means of predicted car crashes counts and
observed counts. The class 11+ summarises all street segments that registered eleven or more
car crashes during the years 2011-2019. We decided to lump the last levels since they are
extremely sparse in the data at end.

IDs detailed in the captions.
Columns from (3) to (6) of Table 5 show that the posterior distributions of the fixed

effects are stable under different priors for τε and τu, i.e. the precisions of the unstructured
terms in the exposure and error model. Columns (1) and (2) show the results obtained by
modifying the prior assigned to βx and exhibit a slightly more erratic behaviour, underlying
that the model is moderately more influenced by assumptions regarding the strength of the
relationship between traffic volumes and crashes counts. This is not surprising considering
the potential interactions amongst the variables associated to the traffic flows, the functional
road class, and the speed limits. In fact, the same situation was also discussed when com-
paring the first and second extensions. Nevertheless, it should be noticed that in all cases
we have got results very close to the ones obtained using the default priors.

Table 6 highlights that the last four specifications are virtually equivalent to the model
with default priors also regarding the posterior distributions of the hyperparameters. More
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Table 5: Posterior means and standard deviations (in brackets) of all fixed effects included
in the regression model for the second extensions considering different priors than the default
ones. Column (0) shows the results obtained using the priors detailed in Section 3, while
the other columns report the results obtained considering the following priors: (1): βx ∼
N(0, 10); (2): βx ∼ N(0, 100); (3): τε ∼ PCτ (2, 0.1); (4): τε ∼ PCτ (0.5, 0.1); (5): τu ∼
PCτ (3, 0.1); (6): τu ∼ PCτ (1, 0.1).

(0) (1) (2) (3) (4) (5) (6)

−19.871 −18.272 −22.561 −19.754 −19.133 −20.236 −19.578Intercept
(0.239) (0.208) (0.577) (0.331) (0.209) (0.228) (0.267)
15.614 13.988 19.387 15.499 14.857 15.990 15.3212nd Road Class
(0.268) (0.235) (0.605) (0.356) (0.239) (0.260) (0.293)
20.084 17.974 24.293 19.951 19.109 20.587 19.7153rd Road Class
(0.312) (0.272) (0.763) (0.441) (0.275) (0.301) (0.353)
−1.490 −1.380 −1.614 −1.478 −1.438 −1.512 −1.466Speed Limit
(0.087) (0.079) (0.116) (0.087) (0.084) (0.088) (0.085)
0.025 0.023 0.030 0.027 0.021 0.027 0.028Population Density
(0.024) (0.024) (0.024) (0.023) (0.024) (0.023) (0.023)
0.036 0.035 0.040 0.040 0.032 0.040 0.040Young Pop. Ratio
(0.044) (0.044) (0.043) (0.043) (0.045) (0.043) (0.043)
0.115 0.115 0.116 0.115 0.115 0.115 0.115Smart-working Ratio
(0.036) (0.036) (0.035) (0.035) (0.036) (0.035) (0.035)
7.956 6.903 9.031 7.748 7.494 7.840 7.657Road traffic
(0.054) (0.113) (0.363) (0.151) (0.079) (0.144) (0.118)

specifically, columns (1) and (2) point out that the estimates of the spatially structured
terms, namely τθ and τϕ, as well as the unstructured component of the error model, i.e. τu
are quite stable, while there is a somewhat stronger variation for τε.

5 Discussion and Conclusions

In this paper we considered the problem of adjusting measurement errors in the covariates
of a spatial regression estimated at the network lattice level. We tackled this problem in
a Bayesian framework comparing three increasingly complex hierarchical models. The first
one completely ignores the problem of ME, the second one defines a classical ME model,
whereas the last one enhances the correction with a spatially structured random effect.
We exemplified the suggested methodologies analysing the distribution of all car crashes
that occurred in the streets of Leeds from 2011 to 2019 using a network lattice approach.
The traffic volumes, which represent a crucial component for a road safety model, were
approximated using GPS data and corrected to adjust for underreporting. We found that,
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Table 6: Posterior means and standard deviations (in brackets) of all hyperparameters
included in the error model for the second extensions considering different priors than the
default ones. The first column, denoted by index (0), contains the results obtained using
the priors detailed in Section 3, while the other columns report the results obtained varying
the following priors: (1): βx ∼ N(0, 10); (2): βx ∼ N(0, 100); (3): τε ∼ PCτ (2, 0.1); (4):
τε ∼ PCτ (0.5, 0.1); (5): τu ∼ PCτ (3, 0.1); (6): τu ∼ PCτ (0.75, 0.1).

(0) (1) (2) (3) (4) (5) (6)

0.458 0.502 0.560 0.548 0.348 0.506 0.571
τθ (0.024) (0.089) (0.066) (0.060) (0.027) (0.062) (0.034)

108.843 83.840 143.558 100.985 109.719 102.070 95.120
τε (6.015) (4.235) (11.006) (6.860) (6.754) (5.374) (4.002)

16.317 16.839 15.807 17.147 16.238 16.750 17.332
τu (0.611) 0.499) (0.471) (0.487) (0.664) (0.513) (0.480)

0.767 0.790 0.771 0.773 0.774 0.759 0.743
τϕ (0.037) (0.028) (0.027) (0.026) (0.033) (0.024) (0.024)

according to DIC and WAIC criteria, the spatial ME greatly improves over the classical
framework.

Our results, which are summarised in Section 4, highlight the importance of the ME
terms. In fact, Table 1 shows the posterior means and standard deviations of all fixed
effects included in the regression model. Looking at the last row of the table, we can notice
the severity of the attenuation bias, which is typical in presence of measurement errors.
Road specific covariates, namely the road class and the speed limits, were found extremely
important. From Table 2 we can deduce that, unsurprisingly, motorways register higher
traffic volumes than other road types. Table 1 also highlights two important findings: a)
there is a positive correlation between crashes counts and traffic volumes; b) the motorways
are the safest road category. These are typical results in the road safety literature. However,
we found that these results can be seriously attenuated (or even completely distorted) if one
estimates the spatial regression model at the segment level ignoring a proper correction for
road traffic volumes. We believe that these results are particularly important from a social
perspective since they demonstrate that naive models may provide misleading guidance for
policy evaluation if practitioners do not properly take into account all sources of errors.

Table 1 also suggests that the socio-demographic variables are not related with the car
crashes occurrences. This is an unexpected finding, which may due to the overlay operations
used to merge the census data with the street segments. In fact, the overlay creates a crude
step-wise constant approximation of the socio-demographic data at the network lattice level
(i.e. the same value is assigned to all segments in a given LSOA), implying that there might

22



be abrupt changes among neighbouring segments. There exists a vast literature on the
spatial misalignment problem for polygonal areas (see, e.g., Banerjee, Carlin, and Gelfand
[4, Chapter 7]), but, to the best of our knowledge, no-one extended these methods to the
network framework. Model based approaches may provide a smoother approximation of the
census covariates and a better understanding of their relationship with crashes counts. This
aspect, despite deserving further investigations, is beyond the scope of this paper since we
focused on the estimation of the relationship between car crashes and traffic counts.

Finally, we tested the predictive accuracy and the robustness of our modelling strategy
exploring different hyperprior distributions for the key parameters of the ME model. We
found that our results are quite robust to variations in the prior assigned to τu and τε and
slightly more sensitive on our assumptions regarding the strength of the relationship between
traffic volumes and crashes counts.

The approaches presented in this manuscript can be extended in several directions. First,
the temporal evolution of car crashes and traffic volumes could be considered, defining a
spatio-temporal variation of the suggested models [14, 36]. Moreover, we could also examine
the multivariate nature of road casualties, computing crashes counts after dividing the events
according to one or more characteristics (e.g. the severity level or the number of cars involved)
[6, 26]. We do not consider both extensions in the current paper since they introduce a lot
of sparsity in the response variable, making the statistical inference even more challenging.
These difficulties are even more pronounced when the ME model is coupled with spatial
regression since the corrections introduce new parameters, adding more complexities to the
estimation process. Finally, we note that there are situations where the classical ME model
is not completely appropriate and other frameworks should be used instead, such as the so-
called “Berkson measurement error model" [8]. The Berkson model could be also considered
in the paradigm proposed in this paper, although the practical implementation for lattice
data defined on a network requires further investigation. All these aspects are, however,
beyond the scope of the present paper and material for future research.
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