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HIT ME UP!

1. Introduction

Geostatistical modeling is afflicted by onerous computational effort when the number of
locations is vast (the so-called “Big-n” problem).

¬ Notwithstanding burgeoning literature, spatial inference remains unfeasible for moderate
data sets on modest computing environments without access to high-powered architectures.

¬ Our efforts fall into “meta-” approaches: a massive data set is split into smaller sets,
analyzed independently, and local results combined to approximate full Bayesian inference.

¬ We introduce Bayesian predictive stacking (bps) in spatial meta-analysis, providing
feasible uncertainty quantification without demanding hardware or slowpoke run-time.

2. Conjugate spatial regression - Latent model

Let’s consider the following hierarchical model

y | ω, β, σ2 ∼ N(Xβ + ω, δ2σ2In)
ω | σ2 ∼ N

(
0, σ2ρϕ(S,S)

)
β | σ2 ∼ N(µβ, σ

2Vβ)

σ2 ∼ IG(aσ, bσ).

(1)

¬ S = {s1, . . . , sn} ∈ R2 be a set of n locations,

¬ y = [y(si)]⊤ is n × 1 vector (i = 1, . . . , n),

¬ X = [x(si)⊤] is n × p matrix full rank p (i = 1, . . . , n),

¬ D = {y ,X} be the observed dataset over S.

¬ δ2 := τ 2/σ2 ∈ [0, 1] is the noise-to-spatial variance ratio,

¬ ω = [ω(si)]⊤ is n × 1 latent process (i = 1, . . . , n),

¬ ρϕ(S,S) be the n × n spatial correlation matrix,

¬ ϕ ∈ R+ index spatial correlation function ρϕ(·, ·).
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For any fixed {ϕ, δ2} we have conjugacy, leading to the posterior density
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(2)

¬ a⋆
σ = aσ + n/2,

¬ b⋆
σ = bσ + 1/2 (y⋆ − X⋆γ̂)

⊤ V−1
⋆ (y⋆ − X⋆γ̂),

¬ M−1
⋆ = X⊤

⋆ V−1
⋆ X⋆,

¬ γ̂ = M⋆X⊤
⋆ V−1

⋆ y⋆.

Spatial predictive inference follows in closed form from the posterior distribution (Zhang
et al., 2021; Banerjee, 2020)
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(3)

¬ U = {u1, . . . , un′} ∈ R2 be a set of n′ unknown locations,

¬ yU = [y(ui)]⊤ is n′ × 1 vector (i = 1, . . . , n′),

¬ XU = [x(ui)⊤] is n′ × p matrix (i = 1, . . . , n′),

¬ ωU = [ω(ui)]⊤ is n′ × 1 latent process (i = 1, . . . , n′),

¬ ρϕ(U ,U) be the n′ × n′ spatial correlation at U .

¬ µ̃ = W γ̂, M̃ = WM⋆W⊤ + Ve ,

¬ Vω = ρϕ(U ,U) − ρϕ(U ,S)ρ−1
ϕ (S,S)ρ⊤

ϕ (U ,S),

¬ Mω = ρϕ(U ,S)ρ−1
ϕ (S,S),

¬ W =

[
0 Mω

XU Mω

]
, Ve =

[
Vω Vω

Vω Vω + δ2In′

]
.

3. Bayesian Stacking of Predictive Densities

Bayesian predictive stacking (bps) of predictive densities, assimilates different models defining
the stacking weights as the following convex optimization problem (Yao et al., 2018; Gneiting
and Raftery, 2007):

max
w∈SJ

1

1

n

n∑
i=1

log
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wjp (yi | D−i ,Mj) , (4)

¬ M = {M1, . . . ,MJ} competitive models specified with a collection of values for {δ2, ϕ},

¬ Equation (4) minimizes kl divergence from the (unknown) true predictive distribution,

¬ we use the K-fold cross-validation estimate of the expected value of the logarithm score.

4. Accelerated Learning for Spatial Random Fields

In order to accelerate the learning for spatial modeling by bps

¬ Data partition: we divide the full data into K subsets: D = {D1, . . . ,DK}.

¬ Local inference: Within each partition, we obtain stacked estimations of posterior distributions over the
J competitive models

p̂(· | Dk) =
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solving for: ẑk = max
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(5)

¬ Global inference: To achieve inferences on D , we stack local posterior distribution estimates between
partitions

p̂(· | D) =
K∑

k=1

ŵkp(· | Dk),

solving for: ŵ = max
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5. Sea Surface Temperature data

Data application focus on Sea Surface Temperature (sst) collected in June 2022

¬ Trainin data: n = 1, 000, 000
locations spread all over the world’s
ocean surface,

¬ Test data: n′ = 2, 500 holdout
locations to evaluate predictive
performances,

¬ Source: National Oceanic and
Atmospheric Administration (noaa).

Figure: Holdout data surface interpolation for sst data analysis.

Figure: Predicted (map) surface interpolation for sst data analysis.

¬ Number of subsets: K = 2, 000
random partitions (500 locations each),

¬ Competetive models: J = 3
collections of values for {δ2, ϕ},

¬ Computing environment: Intel Core
I7-8750H CPU with 5 physical cores.

¬ Timing: ≈ 63 minutes (1 hour) for
full Bayesian analysis (including model
fitting, posterior sampling, and
prediction),

¬ Predictive performances: rmspe
≈ 9 times lower w.r.t. Bayesian
conjugate model.

Conjugate linear model Bayesian predictive stacking

β0 17.890 (17.87, 17.91) 8.846 (3.382, 12.627)
βlong 0.010 (0.01, 0.02) -0.040 (-0.347, 0.221)
βlat -0.540 (-0.550, -0.540) -0.102 (-0.427, 0.412)
σ2 96.470 (96.21, 96.73) 25.607 (18.032, 38.050)

rmspe 9.855 1.165
Time – 63

Table: Sea Surface Temperature data analysis parameter estimates, rmspe, and computing time in
minutes for candidate models. Parameter posterior summary 50 (2.5, 97.5) percentiles.
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Figure: Double Bayesian predictive stacking approach representation

6. Statistical software

A novel optimized R package was created, named spBPS:

¬ Introduce the bps framework for univariate, and multivariate,

geostatistical modeling,

¬ Use Rcpp/C++ -based code, allowing faster and more scalable parallel

computations,

¬ Available @lucapresicce/spBPS on GitHub (soon on CRAN).
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