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Introduction



Probabilistic machine learning and GeoAI systems

Geospatial artificial intelligence (GeoAI) is a rapidly evolving discipline at the interface of statistical learning and
spatial data science, attempting to harness the analytical capabilities of Artificial Intelligence (AI) to analyze massive
amounts of geographic data.

A fundamental question concerns the role of formal statistical inference in GeoAI, since spatial-temporal random
fields enjoy a prominent presence of theoretical developments within classical and Bayesian paradigms [see, e.g.,
3, 13, 7, 4, 1].

GeoAI offers space to accommodate rigorous probabilistic learning as a crucial constituent in artificially
intelligent data analysis systems.
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Challanges in probabilistic Geospatial systems

Spatial modeling relies upon Gaussian processes (GPs). Despite great flexibility, their covariance kernels do not
yield computationally exploitable structures, and full inference becomes impracticable for massive datasets.

Full inference typically requires Markov chain Monte Carlo (MCMC) [5], variational approximations [11, 16, 2], or
Gaussian Markov random field approximations [12, 10, and references therein] along with integrated nested Laplace
approximations (INLA).

Focusing upon the richness of statistical inference involves a significant amount of human intervention. Building
a GeoAI system will require minimizing human intervention to offer a robust spatial data analysis framework.
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Current contributions

We devise a spatial data analytic framework that holds significant promise for GeoAI. This approach relies upon
two basic tenets:

+ model-based statistical inference for underlying spatial processes in a robust and largely automated manner
with minimal human input;

+ achieving such inference for truly massive amounts of data without resorting to iterative algorithms (such as in
MCMC).

Retaining the benefits of Bayesian hierarchical models while performing spatial data analysis at unprecedented
scales requires some concessions from conventional decision-theoretic paradigms.
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Bayesian Transfer Learning for GeoAI



Bayesian Transfer Learning - (1)

Transfer learning (TL) broadly refers to propagating knowledge from a task to accomplish a different task. We
look at transferring inference from one subset of spatial data to the next in a stream of subsets to assimilate
inference for the entire data set.

This resembles “divide and conquer” methods that divide a computationally unfeasible problem into tractable
sub-problems. Wishing to reproduce the inference, as we would be able to analyze the entire dataset with a desired
model.

This is achieved only in special cases. Learning from spatial random fields is complicated because of the
complex inherent dependencies in the data.
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Bayesian Transfer Learning - (2)

We consider the multivariate conjugate matrix-variate Bayesian linear regression model

Y | β,Σ ∼ MN(Xβ,V,Σ),

β | Σ ∼ MN(M0m0,M0,Σ), Σ ∼ IW(Ψ0, ν0)
(1)

Let D = {D1, . . . ,DK}, where each Dk = {Yk,Xk}. By distribution theory, starting with
MNIW(β,Σ | Mkmk,Mk,Ψk, νk) at k = 0 (the prior), the Bayesian updating

p(β,Σ | D1:k+1) ∝ p(β,Σ | D1:k)× p(Yk+1 | Xk+1β,Vk+1,Σ) (2)

leads to β,Σ | D1:k+1 ∼ MNIW(Mk+1mk+1,Mk+1,Ψk+1, νk+1) Until k = K, with

M−1
k+1 = M−1

k + X⊤
k+1V−1

k+1Xk+1, mk+1 = mk + X⊤
k+1V−1

k+1Yk+1,

νk+1 = νk + nk+1, Ψk+1 = Ψk + Y⊤
k+1V−1

k+1Yk+1 + m⊤
k Mkmk − m⊤

k+1Mk+1mk+1.

(3)
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Bayesian Transfer Learning - (3)

However, We exactly recover the posterior distribution p(β,Σ | D) only if Yk’s are assumed to be independent.
Spatial and spatiotemporal random field models (more generally correlated data) immediately present a challenge.

We devise a method for assimilating the learning from each block, exploiting the fact that Vk is indexed by a few
parameters. Fixing these parameters for each k, yielding closed-form posterior inference on β and Σ.

Stacking combines these analytically accessible distributions, reconstructing the posterior (and predictive)
distributions for the spatial random field without imposing block independence.
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Bayesian Stacking of Predictive Densities

Bayesian predictive stacking (BPS) assimilates models using a weighted distribution in the convex hull,
C =

{∑J
j=1 wjp(· | D ,Mj) :

∑
j wj = 1,wj ≥ 0

}
, of individual posterior distributions by maximizing the score

[8, 17] to fetch

(w1, . . . ,wJ)
⊤ = arg max

w∈SJ
1

1

n

n∑
i=1

log
J∑

j=1

wjp (Yi | D−i,Mj) , (4)

where D−i is the dataset excluding the i-th observation, and M = (M1, . . . ,MJ) are J different models. Each
element of M corresponds to fixed spatial correlation kernel parameters in V.

Solving (4) minimizes the Kullback-Leibler divergence from the true predictive distribution, easily executable
using convex optimization [9, 6]. Since the true predictive distribution is unknown, we use a leave-one-out (LOO)
estimate of the expected value of the score [17].

8



Accelerated learning for spatial random fields - (1)

Let S = {s1, . . . , sn} be a set of n locations yielding observations on q possibly correlated outcomes. We collect
them into matrix Y (n × q). Let X (n × p) consisting of p < n explanatory variables (rank p).

We cast this into (1) introducing a multivariate latent spatial process Ω (n × q) as

Y | β,Ω,Σ ∼ MN(Xβ +Ω, (α−1 − 1)In,Σ)

β | Σ ∼ MN(M0m0,M0,Σ)

Ω | Σ ∼ MN(0,V,Σ)

Σ ∼ IW(Ψ0, ν0).

(5)

V (n × n) is a spatial correlation matrix with (i, j)-th element is the value of a positive definite spatial
correlation function ρ(si, sj;ϕ) indexed by ϕ.

α ∈ [0, 1] is the proportion of variability due to the spatial process and introduces discontinuity in the spatial
correlation.
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Accelerated learning for spatial random fields - (2)

Let assume
γ,Σ ∼ MNIW (µγ ,Vγ ,Ψ0, ν0) , (6)

with γ⊤ =
[
β⊤,Ω⊤]

, µ⊤
γ =

[
m⊤

0 M0, 0q×n
]
and Vγ = blockdiag

{
M0, ρϕ(S,S)

}
.

The MNIW prior is conjugate with respect to the matrix-normal likelihood. Thus, for any fixed {α, ϕ} and
hyperparameters in the prior density, we obtain the MNIW posterior density

γ,Σ | D ∼ MNIW
(
γ,Σ | µ⋆

γ ,V⋆
γ ,Ψ

⋆, ν⋆
)
, (7)

where V⋆
γ =

[
α

1−α
X⊤X + M−1

0
α

1−α
X⊤

α
1−α

X ρ−1
ϕ

(S,S) + α
1−α

In

]−1

, µ⋆
γ = V⋆

γ

[
α

1−α
X⊤Y + m0
α

1−α
Y

]

and Ψ⋆ = Ψ0 + α
1−α

Y⊤Y + m⊤
0 M0m0 − µ∗⊤

γ V∗−1µ⋆
γ , ν⋆ = ν0 + n.
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Accelerated learning for spatial random fields - (3)

Let U = {u1, . . . , un′} be a set of n′ unobserved locations where we seek to predict the value of Y based upon
XU (n′ × p). The joint posterior predictive for YU and the unobserved latent process ΩU is

YU ,ΩU | D ∼ T2n′,q(ν
⋆, µ⋆,V⋆,Ψ⋆). (8)

Which is a matrix-variate Student’s t with degrees of freedom ν⋆ , location matrix µ⋆ = Mµ⋆
γ , row-scale matrix

V⋆ , and column-scale matrix Ψ⋆ .

where MU = ρϕ(U ,S)ρ−1
ϕ (S,S) and VΩU = ρϕ(U ,U)− ρϕ(U ,S)ρ−1

ϕ (S,S)ρϕ(S,U)

M =

[
0 MU

XU MU

]
and V⋆ = MV⋆

γM⊤ + VE , VE =

[
VΩU VΩU
VΩU VΩU + (α−1 − 1)In′

]
.

11



Accelerated learning for spatial random fields - (4)

This tractability is only possible if {α, ϕ} are fixed, which are inconsistently estimable [18] resulting in poorer
convergence. We pursue exact inference using (7) and (8), stacking the inference over the different fixed values of
{α, ϕ}.

For GeoAI we seek to minimize human intervention using a set of J candidate values {αj, ϕj} specifying model
Mj for j = 1, . . . , J.

We now obtain analytical closed forms for p(β,Σ | D ,Mj) for each j, and use BPS of predictive densities to
evaluate the stacked posterior distribution.
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Accelerated learning for spatial random fields - (5)

For each subset of the data, we compute the stacking weights {zk,j} as

max
zk∈SJ

1

1

nk

nk∑
i=1

log
J∑

j=1

zk,jp
(
Yk,i | Dk,[−l],Mj

)
, (9)

where Yk,i is the i-th row of Yk,[l] ∈ Dk,[l] (the l-th fold within the k-th dataset), and l = 1, . . . ,L, with L number of
folds for K-fold cross-validation.

Since p
(
Yk,i | Dk,[−l],Mj

)
= T1,q(Yk,i | ν⋆[−l], µ

⋆
i ,V⋆

i ,Ψ
⋆
[−l]) available in closed-form, computations are very

efficient.

For each of k = 1, . . . ,K dataset, Dk , we compute:

+ stacked posterior: p̂(· | Dk) =
∑J

j=1 ẑk,j p (· | Dk,Mj) for j = 1, . . . , J

+ stacking weights: ẑk = {ẑk,j}j=1,...,J .
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Accelerated learning for spatial random fields - (6)

For inference on the full spatial dataset, we apply BPS a second time, which is equivalent to solving the following
convex optimization problem:

max
w∈SK

1

1

n

n∑
i=1

log
K∑

k=1

wkp̂
(
Yi | Dk,[−l]

)
= max

w∈SK
1

1

n

n∑
i=1

log
K∑

k=1

wk

J∑
j=1

ẑk,jp
(
Yk,i | Dk,[−l],Mj

)
. (10)

Once the stacking weights ŵ = {ŵk}k=1,...,K are obtained, estimation of any posterior or posterior predictive
distribution of interest is achieved as

p̂(· | D) =
K∑

k=1

ŵk

J∑
j=1

ẑk,j p (· | Dk,Mj) . (11)

Given the two sets of weights derived from double stacking, the estimated full posterior distribution is a mixture
of finite mixtures.
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Accelerated learning for spatial random fields - (7)

D

D1

...

DK

M1

MJ

...

...

M1

MJ

...

p̂(Ỹ | D1) =
J∑

j=1

ẑ1,jp(Ỹ | D1, Mj)

p̂(Θ | D1) =
J∑

j=1

ẑ1,jp(Θ | D1, Mj)

...

p̂(Ỹ | DK) =
J∑

j=1

ẑK,jp(Ỹ | DK, Mj)

p̂(Θ | DK) =
J∑

j=1

ẑK,jp(Θ | DK, Mj)

p̂(Ỹ | D) =
K∑

k=1

ŵkp̂(Ỹ | Dk)

p̂(Θ | D) =
K∑

k=1

ŵkp̂(Θ | Dk)

DATA PARTITION LOCAL INFERENCE GLOBAL INFERENCE

STACKING

STACKING

Figure 1: Double Bayesian predictive stacking approach representation
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Findings



Computational Details

Implementing the methodology, we also developed the spBPS R package, available on CRAN, and provide
functions to automately perform double BPS for hierarchical model in Equation (5).

Reproducible programs can be found on GitHub, in the repository
lucapresicce/Bayesian-Transfer-Learning-for-GeoAI

Simulations, and data analyses were executed on a laptop running an Intel Core I7-8750H CPU with 5 available
cores for parallel computation, and 16 Gb of RAM.

We investigate theoretical computational complexity, memory management issues, efficient parameter sampling
schemes, and sensitivity on data shards K.
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Simulation studies

We conduct multiple simula-
tion experiments on synthetic
data generated from (5) to eval-
uate inferential performance
while underscoring comparisons
with existing approaches.

Figure 2: from left to right: comparison between the
true generated response surfaces, the surfaces
predicted from BPS and SMK (posterior mean), with
RMSPE. For n = 5000, K = 10.

17



Data applications - Sea Surface Temperature (SST)

Figure 3: from left to right: comparison between training (top left panel), test (top right panel), and predicted surface (bottom right panel). In addition, the empirical coverage for the
response (bottom left panel). Results for K = 2, 000.
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Data applications - Vegetation Index (VI)

Figure 4: from left to right: comparison between
training (top left panel), test (top right panel), and
predicted surface (bottom right panel), for NDVI
response. In addition, the empirical coverage for
outcomes (bottom left panel). Results for
K = 2, 000.

Figure 5: from left to right: comparison between
training (top left panel), test (top right panel), and
predicted surface (bottom right panel), for red
reflectance response. In addition, the empirical
coverage for outcomes (bottom left panel). Results
for K = 2, 000.
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Conclusion



Wrapping Up

Existing approaches rely on iterative algorithms for estimating weakly identifiable parameters [18, 14]. We,
instead, propose a transfer learning double-stacking approach:

+ we first obtain stacked inference for each of the parameters within each subset;

+ then we assimilate inference across subsets by a second stacking algorithm.

We harness analytical closed-form distribution theory to deliver inference. This is possible by “fixing” spatial
correlation kernel parameters.

Our approach carries out fast and exact inference based on the matrix-variate distributions and assimilates the
inference using Bayesian predictive stacking [15, 17].
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Ongoing works



Adaptive Markovian Spatiotemporal Propagation in Multivariate Bayesian Modeling

joint work with Sudipto Banerjee (UCLA).
D1 DT

p(· |D1, M1)

· · ·

p(· |D1, Mj)

· · ·

p(· |D1, MJ)

PARALLEL COMPUTING

p(· |DT, M1)

· · ·

p(· |DT, Mj)

· · ·

p(· |DT, MJ)

PARALLEL COMPUTING

∑J
j=1 ŵ1,j p(· | D1,Mj)

{Ŷ, Θ̂}1

∑J
j=1 ŵT,j p(· | DT,Mj)

{Ŷ, Θ̂}T

STACKING STACKING

· · ·

FORWARD FILTERING

for {Dt}t=2,...,T−1

· · ·

BACKWARD SAMPLING

for {Dt}t=T−1,...,2

Figure 6: Data shards dynamics dependences representation

Scalable Dynamic linear model strategy to manage massive online streaming of multivariate spatiotemporal
datasets, ensures an adaptive framework for modeling Markovian dependence through time.

Conjugate inference through predictive stacking, combining sequential and parallel processing of temporal slices:
each unit passes assimilated information forward, then back-smoothed.
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Uncovering Dependences in Distributed Multivariate Models via Bayesian Graphical Learning

joint work with Federico Castelletti (UCSC)

Y1n1

Y2n2

Y3n3

Y4n4

Y5n5

Y6n6

q

Distributed hierarchical model:

Yk | θk,Σk ∼ MNm,q(θk, Vk,Σk)

θk | Σk ∼ MNm,q(0, Rk,Σk)

Σk ∼ IWq(νk,Ψk)

First Principal Component:

{Z(s)
k = θ̃

(s)⊤
k ak}

S
s=1

from Posterior samples s = 1, . . . S :

θ̃k | Yk ∼ Tν̄k (0, R̄k, Ψ̄k, ν̄k)

Z1

Z2

Z3

Z4

Z5

Z6

S

S

S

S

S

S

q

Multidimensional

DAG

1S

q

2 S

q

3S

q

4 S

q

5S

q

6 S

q

Conditional independence structure

across distributed data shards

Figure 7: From gathering distributed settings to model the conditional dependencies across datasets.

Graph-based methodology to broadcast propagation within Bayesian distributed learning paradigms.

Conditional dependencies structure learning for multivariate analysis of correlated data, e.g., tensor of
spatiotemporal data.
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Matrix-normal distribution: an overview

Let Yn×q be an n × q random matrix that is endowed with a probability law from the matrix-normal distribution,
MN(M,V,U), with probability density function

p(Y | M,V,U) =
exp

[
− 1

2
tr

{
U−1(Y − M)⊤V−1(Y − M)

}]
(2π)

np
2 | U |

n
2 | V |

q
2

, (12)

where tr(·) is the trace operator on a square matrix.

The matrix-variate Gaussian distribution is often parametrized as follows: M is the mean matrix, and V and U are
the n × n row-covariance and q × q column covariance matrices, respectively.
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