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How it started

This is a joint work with

Sudipto Banerjee

University of California, Los Angeles

☞ Y. Yao, A. Vehtari, D. Simpson and A. Gelman (2018) “Using stacking to average

Bayesian predictive distributions”, Bayesian analysis, vol. 13.

☞ S. Banerjee (2020) “Modeling massive spatial datasets using a conjugate Bayesian

linear modeling framework”, Spatital Statistics, vol. 37.

☞ L. Zhang, W. Tang and S. Banerjee (2023) “Exact Bayesian Geostatistics Using

Predictive Stacking”, arXiv preprint, arXiv:2304.12414.
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Issues in Geostatistical Models

Geostatistical modeling is afflicted by onerous computational effort when the

number of locations is vast (the so-called “Big-n” problem).

☞ Despite extensive literature, spatial inference remains unfeasible for

moderate data sets on modest computing environments.

☞ Our efforts fall under “meta-” learning: split a data set into smaller

sets, and combined local results to approximate full Bayesian inference.

☞ We introduce Bayesian predictive stacking (bps) in spatial

meta-analysis, providing feasible uncertainty quantification on modest

computing architectures.
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Accelerated Learning for Spatial Random Fields
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Figure 1: Double Bayesian predictive stacking approach representation
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Sea Surface Temperature Data Analysis

Dimensions:

☞ 1 million train locations

☞ 2000 partitions (500 locations each)

☞ 2500 holdout locations

☞ 5 computational cores

Figure 2: Holdout data surface interpolation for

sst data analysis.

Figure 3: Predicted (map) surface interpolation for

sst data analysis.

Achievements:

☞ ≈ 60 minutes (1 hour)

☞ rmspe almost seven times lower

w.r.t. Bayesian conjugate model
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spBPS: Accelerated Spatial Modeling by Bayesian Predictive Stacking

Let me conclude by presenting the novel R package created, named spBPS

☞ Introduce bps framework for univariate, and multivariate, geostatistical

modeling.

☞ Use Rcpp/C++ -based code, allowing faster and scalable parallel

computations.

☞ Available @lucapresicce/spBPS on GitHub, (and soon on CRAN).

Check it out on my GitHub!
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https://github.com/lucapresicce/spBPS


Thanks for your attention!



Univariate Spatial regression - Latent model

Let consider

☞ S = {s1, . . . , sn} ⊂ D be a set of n locations,

☞ y = [y(si )]
⊤ be n × 1 vector (for i = 1, . . . , n),

☞ X = [x(si )
⊤] be n × p matrix full rank p (for i = 1, . . . , n).

Such data can be modeled using:

y = Xβ + ω + ey , ey ∼ N(0, δ2σ2In) , ω | σ2 ∼ N
(
0, σ2ρϕ(S,S)

)
;

β = µβ + eβ , eβ ∼ N(0, σ2Vβ) ; σ2 ∼ IG(aσ, bσ).

(1)
Where

☞ δ2 := τ 2/σ2 ∈ [0, 1] is the noise-to-spatial variance ratio,

☞ ω = [ω(si )]
⊤ is n × 1 latent process (for i = 1, . . . , n),

☞ ρϕ(S,S) be the n × n spatial correlation matrix,

☞ ϕ ∈ R+ index spatial correlation function ρϕ(·, ·).
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