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Introduction & Motivation




How it started

This is a preliminary work in collaboration with

|
Sudipto Banerjee

University of California, Los Angeles

e L. Presicce, S. Banerjee (2025+) “Adaptive Markovian Spatiotemporal Propagation in Multivariate Bayesian Modeling”, In
Preparation.

w L Presicce, S. Banerjee (2025) “Bayesian Transfer Learning for Artificially Intelligent Geospatial Systems: A Predictive Stacking
Approach”, Under Review.

= S, Banerjee (2020) “Modeling massive spatial datasets using a conjugate Bayesian linear modeling framework”, Spatital
Statistics, vol. 37.



Motivation: Data-Rich Spatiotemporal Environment

Spatiotemporal phenomena are pervasive in many research areas (e.g., Environmental and
climate sciences, Biomedical applications, Epidemiology and health analytics, Remote
sensing and geostatistics)

Facing these problems main challenges arise:

5 High-dimensional observations over time
== Complex spatial and temporal dependencies

= Provide inferences in real time

¥ Key point: Necessity for spatiotemporal models offering on-demand inferences and
predictions for large-scale online frameworks.



(Why) Existing Methods (Struggle)

Dynamic linear models (pLMs) offer a convenient framework [6, 3], along with the forward
filtering backward sampling [2] algorithm (FFBS).

Conjugacy is lost when incorporating spatiotemporal covariance structures, as introduce
(weakly identifiable) non-conjugate parameters.

Classical simulation-based or iterative algorithms are computationally intensive: infeasible
for large-scale real-time tasks.

Most contributions focus on empirical Bayes [9], stochastic differential equations [5], or
other iterative strategies as INLA [8], which may require strong prior assumptions [5].



Proposal & Model Overview




Chasing - exact, full - conjugacy

We propose a scalable online learning framework using variational propagation to restore
exact conjugacy.

= Encode time-evolving latent states and multivariate spatial dependencies using

Matrix-variate DLM.

1 Leverage Bayesian Predictive Stacking (Bps) to combine multiple models with different
spatial parameters.

i Derive Variational approximation to recover full conjugacy (and scalability) by projecting
mixtures of posteriors into conjugate families.



Spatiotemporal - Matrix-Variate - Dynamic Linear Models - (1)

Let Y= {Yt cteT C N} be a spatiotemporal tensor of outcomes: Y; (n x ¢g) matrix with n
fixed locations § = {s1,..., sn}, for g correlated outcomes.

A matrix-variate dynamic linear model can be represented as:

Yt = Ft@t + Tt, Tt Y MN(O, Vt7 E) (1)
@t = Gt@tfl + Et, Et 2 MN(O, Wt, E)

Consider now the following reparameterization

w O, =[B] : Q]]": regression coefficients and latent spatial process

w V= Vi(a) = %Hn introducing discontinuity with proportion of spatial variability «

w W, = Wy(e) includes spatial kernel Ry(S, S;¢) (B; L Q;Vt — W, block-diagonal).



Spatiotemporal - Matrix-Variate - Dynamic Linear Models - (2)

We can cast (1) as multivariate autoregressive latent spatial regression
Yi| B;, 4, X ~ MN(X; By + Q;, (o —1)7 1, )
By | © ~MN(B,_y, WP %) 2)

Q|  ~MN(Q_1, Ri(S,8;9), 2),

with prior information on state matrix, and common column covariance matrix defined as

w [By :QJ]T =6 | & ~ MN(mg, Cy, %)
s Y~ IW(V(), \Ifo)

where my, Cy, 19, and ¥q are considered known quantities.



Methodological Details




Conjugacy of Matrix-Normal-Inverse-Wishart family within FFBS

Here FFBS provides convenient conjugate framework to propagate posteriors through time:
W Given a fixed couple {a, ¢}, Model (2) is fully conjugate

Posterior and posterior predictive are available in closed form as MNIw and matrix-variate
Student's t distributions [1, 7].

Avoiding simulation-based or iterative approaches to evaluate non-conjugate parameters for
dynamic spatiotemporal models.

& Key point: combinations of {«;, ¢;} (characterizing different models .#;, for j=1,...,.J)
yield distinct but tractable posteriors.



Collect inferences - (Dynamic) Bayesian Predictive Stacking of Predictive Densities

BPS of predictive densities assimilates models using a weighted distribution in the convex
hull, C;, = {ij:l Wi (| Vi1, M) 0 3wy =1, wyj > O}, of individual posterior
distributions by maximizing the logarithm score [4, 10] to fetch

n

Wy = (W1, .. th)T—argmafoIOg Zwtjp (Y| Yigr, A) , 3)

w,GS n —

where any 1-step-ahead predictive p( - | Y1..—1,#;) available in closed-form, and each
model .#; corresponds to fixed couple {¢;, ¢;}.

Solving (3) minimizes the Kullback-Leibler divergence from the true 1-step-ahead predictive
distribution: since unknown, we use leave-future-out (LFO) to estimate the expected value of
the score [10].



Challenges & Solutions




All that glitters is not gold - BPS breaks online conjugacy

Once obtained w,, posterior inference follow by stacked posterior distributions:

(| Yie) = Zwtjp | Ya.e, 4), (4)

Stacked posteriors p(04, X | Yi.4) = Z;-le Wy ; p(O4, X | Y14, #;) are mixtures of MNIW
distributions, no longer belonging conjugate families

Leading to non-conjugate posterior-to-prior update: we cannot propagate to future time
point using FFBS machinery again.

& Solution: use variational approach to find the mNIw distribution that minimize kL
divergence from stacked posterior.



Recovering exact conjugacy - (Variational) Approximation to Propagation

We obtain the variational approximating posterior distribution
PrL(©4, 2| Y1) = MNIW(O,, S | iy, Cy, Uy, i) (5)
with 7y = 32 wym?, S w; (O + (m = )T — i), Ue = o0 [ wp w710 -

v =P 4 2 is constant across models .4, defining i as 7, = > vy 9 allow direct
computation of ¥, otherwise not possible.

Variational posterior in (5) belongs to mNIw family, restoring exact temporal
posterior-to-prior conjugate update.

b Using pxz (04, X | Y1) instead of (4) permits conjugate online propagation to future time
point with FFBS machinery.



Temporal Evolution Architecture - Evolving State and Observation Matrices

Yy = F©y + Ty
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Figure 1: Temporal datasets dynamic propagation representation
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Empirical Results




Simulation Study - Experimental Setup

Establish effectiveness using synthetic generated data from model in Equation (2)

We consider n = 300 fixed locations, over T = 20 time instants (6000 multivariate
observations), for ¢ = 3 correlated outcomes, and p = 4 predictors.

1 —-0.30.6 . .
True parameters set as ¥ = {70‘3 1.2 0.4}, a = 0.8, ¢ = 4 (exponential spatial kernel), state
06 04 1

matrix initialized at ©g = O(p4n)x ¢-

Implementing BPS uses J =9 models: a € {0.65,0.8,0.95}, ¢ € {2,4,6}



Simulation Results - Coefficient Dynamics
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Figure 2: Regression coefficients dynamics: true (solid line), map (dashed line), and 95% credible interval (shade).

b Strong tracking of true dynamics for regression coefficient and spatial process.

o Credible intervals (95%) show excellent calibration with 95.28% empirical coverage.
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Simulation Results - Temporal Forecasting
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Figure 3: Temporal forecast for outcome 1 at selected time points: true (top row), and predicted surfaces (bottom row).

= Rapid temporal dynamics learning from time ¢ = 2 onward.
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Simulation Results - Spatial Interpolation
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Figure 4: Spatial interpolation at unobserved points for t=20: true (top row), and predicted surfaces (bottom row).

& Spatial interpolations indistinguishable from raw truth.
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Conclusions




Wrapping up - Take home message

Exact conjugate inference restored for dynamic spatiotemporal models, avoiding
simulation-based algorithms or strong prior information.

¥ BPS permits within-time point conjugacy — parallel learning

¥ KL approximation permits between-time point conjugacy — sequential learning

variational approximation is only used to propagate information across time, while stacked
posteriors are used for accurate dynamic inferences and predictions.

Simulation experiments show strong empirical performance and computationally efficient
online learning.
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spFFBS: Fully Conjugate Matrix-variate DLMs for Spatiotemporal modeling

Working in progress — spFFBS R package:

& Introduce an easy framework to fully conjugate matrix-variate bLms framework for
spatiotemporal geostatistical modeling.

& Use Rcpp/C++ -based code, allowing faster and scalable parallel-sequential
computations for dynamic spatiotemporal model (2).

¢ Available on Github @lucapresicce/spFFBS (hopefully sooon on CRAN).

Check it out on my GitHub! 7
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